The Crystal and Molecular Structure of the Alkaloid Lycorine

By R. Roques and J. Piquion
Faculté des Sciences, Université d'Abidjan, Ivory Coast
and R. Fourme and D. André
Laboratoire de Chimie Physique, Matière et Rayonnement, associé au CNRS, B. 350, 91405 Orsay, France

(Received 27 June 1973; accepted 19 September 1973)

Abstract

The crystal structure of the Amaryllidaceae alkaloid lycorine, $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~N}$, has been determined by direct methods from three-dimensional diffractometer data. The unit cell is orthorhombic, space group $P 22_{1} 2_{1}$, with four molecules per unit cell and $a=11 \cdot 742, b=13 \cdot 986, c=8 \cdot 314 \AA$. The final value of R over 1327 independent reflexions is 3.8%. The thermal motion has been analysed in terms of the rigidbody model and the hydrogen bonding is described.

Introduction

Crinum jagus is one of the Amaryllidaceae of the Ivory Coast, used for local pharmacopeia, which are currently being examined by a research group of the University of Abidjan for their structural and medicinal properties. Lycorine (Fig. 1) is the most abundant alkaloid occuring in the Amaryllidaceae; this compound has been extracted from bulbs of Crinum jagus then purified and crystallized from a mixture of chloroform and methanol. The mass spectrum analysis confirmed the molecular formula $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~N}$. The absolute configuration of lycorine has previously been suggested by Nakagawa \& Uyeo (1959), using Mill's rule (1952) and by the X-ray analysis of dihydrolycorine hydrobromide (Shiro, Sato \& Koyama, 1968).

Experimental

Lycorine $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}$, m.p. $519^{\circ} \mathrm{K}$, M.W. 287.3, colourless prisms, orthorhombic.
$a=11.742$
(2) \AA
$V=1365 \AA^{3}$
$b=13.986$ (2)
$c=8.314$ (1)

$$
D_{x}=1 \cdot 40 \mathrm{~g} \mathrm{~cm}^{-3} \text { for } Z=4
$$

$\lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.54178 \AA$
$D_{m}=1.39 \mathrm{~g} \mathrm{~cm}^{-3}$ (flotation)
$T=295^{\circ} \mathrm{K}$

$$
F(000)=608
$$

Absent reflexions: $h 00$ when h is odd, $0 k 0$ when k is odd, $00 l$ when l is odd. Space group $P 2_{1} 2_{1} 2_{1}$.
The intensities were collected on an on-line fourcircle Siemens diffractometer, using nickel-filtered $\mathrm{Cu} K \alpha$ radiation. A crystal of approximate dimensions $0.1 \times 0.2 \times 0.3 \mathrm{~mm}^{3}$ was aligned with its (001) axis along the φ axis of the diffractometer. Intensity data were taken up to $\sin \theta / \lambda=0.61 \AA^{-1}$ by the five-points method. The variation of a standard reflexion during the collection period did not indicate any significant crystal decomposition due to X-ray exposure. Of the 1503 reflexions, 1333 reflexions (89%) were considered as observed $[I \geq 2 \sigma(I)]$. Absorption corrections were not made because of the low μ value and the small size of
the crystal. After application of the Lorentz and polarization corrections, an overall temperature factor and an absolute scale factor were computed by statistical methods.

Structure determination

The structure was solved by applying a modification of the symbolic addition procedure (Karle \& Karle, 1966). Three reflexions were fixed to define the origin of the cell; the numerical values of the phases of six additional reflexions were determined by the phase function method (Riche, 1970, 1972). The phases of 274 reflexions were obtained by an iterative application of the Σ_{2} relationship to the set of phases which gave the highest peak in the phase function map. The corresponding E map readily displayed the whole molecular skeleton. The starting set of phases is given in Table 1.

Table 1. Starting set for the application of Σ_{2}
$\left.\begin{array}{rrrcc}h & k & l & E & \begin{array}{c}\text { Phase } \\
\text { (cycles) }\end{array} \\
8 & 9 & 0 & 4.09 & 0.0000 \\
9 & 7 & 0 & 3.46 & \begin{array}{c}0.2500 \\
8\end{array} 1 \\
0 & 5 & 3.15 & 0.0000 \\
0 & 8 & 5 & 4.24 & 0.5000 \\
0 & 10 & 7 & 2.90 & 0.5000 \\
6 & 15 & 1 & 2.60 & 0.2500 \\
6 & 3 & 8 & 2.49 & 0.2500 \\
8 & 4 & 3 & 2.48 & 0.7500 \\
6 & 7 & 4 & 2.44 & 0.2500\end{array}\right\}$ Origin \(\left.\begin{array}{l}

\end{array}\right\}\)| Most probable phases |
| :--- |
| determined from the |
| phase function map |

The atomic coordinates thus obtained and isotropic temperature factors were refined by the full-matrix least-squares method. After three cycles of refinement, the residual index $R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|$ was reduced to $0 \cdot 11$. The subsequent refinement was performed by introducing anisotropic temperature factors for all the non-hydrogen atoms. After two cycles, the R value was $0 \cdot 09$. The hydrogens were located on a difference electron density map and their contributions were included in the structure-factor calculations. At this

Fig. 1. The lycorine molecule.
point, six strong low-angle reflexions which appeared to be affected by extinction were discarded and two cycles of full-matrix anisotropic refinement with all hydrogen

Table 2. Coordinates of nonhydrogen atoms with e.s.d.'s in parentheses
Coordinates represent the true absolute configuration in a right-handed reference frame.

	x / a	y / b	z / c
C(1)	$0 \cdot 10378$ (27)	$0 \cdot 61063$ (24)	$0 \cdot 59251$ (40)
C(2)	$0 \cdot 14646$ (26)	$0 \cdot 54420$ (23)	$0 \cdot 46200$ (40)
C(3)	$0 \cdot 27469$ (26)	$0 \cdot 55466$ (21)	$0 \cdot 41910$ (36)
C(4)	$0 \cdot 34228$ (25)	0.57871 (21)	$0 \cdot 57020$ (36)
C(5)	$0 \cdot 47152$ (25)	$0 \cdot 58530$ (21)	$0 \cdot 55806$ (38)
C(6)	$0 \cdot 53235$ (26)	0.51761 (24)	$0 \cdot 46640$ (42)
C(7)	$0 \cdot 64820$ (27)	$0 \cdot 52553$ (24)	$0 \cdot 46658$ (44)
$\mathrm{O}(8)$	0.72599 (19)	0.46872 (18)	$0 \cdot 38609$ (34)
C(9)	$0 \cdot 83460$ (28)	0.49949 (28)	$0 \cdot 44094$ (55)
$\mathrm{O}(10)$	$0 \cdot 82060$ (18)	$0 \cdot 58930$ (18)	0.52171 (34)
C(11)	0.70489 (25)	0.59687 (24)	0.54831 (43)
C(12)	0.64874 (29)	0.66296 (23)	0.63911 (42)
C(13)	0.52910 (27)	$0 \cdot 65590$ (22)	$0 \cdot 64637$ (38)
C(14)	$0 \cdot 46792$ (28)	0.72859 (23)	0.75195 (43)
$\mathrm{N}(15)$	$0 \cdot 35072$ (22)	0.69749 (17)	$0 \cdot 78570$ (30)
C(16)	$0 \cdot 27451$ (33)	0.77110 (23)	$0 \cdot 85425$ (44)
C(17)	$0 \cdot 15351$ (31)	0.73578 (26)	$0 \cdot 81141$ (47)
C(18)	$0 \cdot 17255$ (27)	0.66937 (23)	$0 \cdot 66991$ (41)
C(19)	$0 \cdot 29755$ (26)	$0 \cdot 67272$ (21)	$0 \cdot 63179$ (37)
$\mathrm{O}(20)$	$0 \cdot 12352$ (18)	0.44820 (15)	$0 \cdot 51897$ (25)
$\mathrm{O}(21)$	$0 \cdot 28701$ (20)	$0 \cdot 62817$ (15)	$0 \cdot 30133$ (27)

Table 3. Coordinates of hydrogen atoms

($B=3.5 \AA^{2}$ for all atoms.)			
	x / a	y / b	z / c
H(1)	$0 \cdot 0128$	瓦毣9 0.6185	$0 \cdot 6071$
H(2)	0.1035	100.0.5538	0.3486
H(3)	$0 \cdot 2982$	$\overbrace{i}{ }^{\text {\% }} 0.4926$	$0 \cdot 3539$
H(4)	$0 \cdot 3303$	$0 \cdot 5247$	$0 \cdot 6526$
H(6)	$0 \cdot 4885$	$0 \cdot 4653$	$0 \cdot 3941$
H(9)	0.8899	0.5056	$0 \cdot 3458$
$\mathrm{H}^{\prime}(9)$	$0 \cdot 8676$	$0 \cdot 4488$	$0 \cdot 5190$
$\mathrm{H}(12)$	0.7037	$0 \cdot 7123$	$0 \cdot 6961$
H (14)	0.4725	0.7975	0.7092
$\mathrm{H}^{\prime}(14)$	$0 \cdot 5094$	0.7277	0.8818
$\mathrm{H}(16)$	0.2834	0.7643	0.9856
$\mathrm{H}^{\prime}(16)$	$0 \cdot 2926$	$0 \cdot 8316$	0.8177
H(17)	$0 \cdot 1074$	0.7991	0.7670
$\mathrm{H}^{\prime}(17)$	$0 \cdot 1059$	0.7064	0.8928
$\mathrm{H}(19)$	0.3129	0.7296	0.5484
H(20)	$0 \cdot 1298$	$0 \cdot 3990$	0.4370
H(21)	0.3192	$0 \cdot 5963$	$0 \cdot 2143$

atom parameters held constant reduced the R value to 0.038 ; the corresponding weighted residual $w R=$ $\left[\Sigma w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum\left(w\left|F_{o}\right|^{2}\right)\right]^{1 / 2}$ was 0.039 . The weighting scheme was $w=1$ for the observed reflexions and $w=0$ for those unobserved. The atomic scattering factors were taken from International Tables for X-ray Crystallography (1962). A final difference map showed no features above $0.21 \mathrm{e} \AA^{-3}$. The positional and thermal parameters together with their standard deviations are given in Tables 2, 3 and 4.*

[^0]Table 4. Thermal parameters of non-hydrogen atoms with e.s.d.'s in parentheses
The parameters are in the form: $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$.

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
C(1)	$0 \cdot 00359$ (21)	$0 \cdot 00400$ (17)	$0 \cdot 01001$ (49)	$0 \cdot 00040$ (18)	0.00037 (30)	-0.00012 (25)
C(2)	0.00371 (21)	$0 \cdot 00362$ (17)	$0 \cdot 00862$ (45)	$0 \cdot 00023$ (17)	-0.00087 (29)	$0 \cdot 00006$ (25)
C(3)	$0 \cdot 00406$ (21)	$0 \cdot 00296$ (15)	$0 \cdot 00685$ (42)	$0 \cdot 00001$ (16)	-0.00036 (27)	$0 \cdot 00000$ (22)
C(4)	$0 \cdot 00362$ (22)	$0 \cdot 00255$ (15)	$0 \cdot 00677$ (42)	$0 \cdot 00008$ (15)	$0 \cdot 00012$ (26)	-0.00016 (21)
C(5)	0.00343 (21)	$0 \cdot 00265$ (15)	$0 \cdot 00820$ (45)	-0.00023 (15)	$0 \cdot 00018$ (28)	0.00011 (24)
C(6)	$0 \cdot 00387$ (21)	$0 \cdot 00349$ (17)	$0 \cdot 01010$ (50)	-0.00032 (16)	-0.00014 (29)	-0.00095 (27)
C(7)	$0 \cdot 00415$ (22)	0.00357 (17)	0.01039 (50)	$0 \cdot 00023$ (18)	$0 \cdot 00068$ (30)	-0.00057 (26)
O(8)	$0 \cdot 00358$ (16)	0.00581 (16)	0.01861 (50)	0.00014 (14)	$0 \cdot 00123$ (26)	-0.00388 (24)
C(9)	0.00344 (24)	$0 \cdot 00527$ (22)	$0 \cdot 02052$ (78)	$0 \cdot 00034$ (20)	$0 \cdot 00059$ (37)	-0.00134 (38)
$\mathrm{O}(10)$	$0 \cdot 00328$ (16)	0.00489 (14)	0.01725 (48)	-0.00060 (12)	0.00031 (24)	-0.00094 (23)
C(11)	0.00303 (21)	0.00387 (17)	0.01057 (51)	-0.00050 (16)	$0 \cdot 00005$ (28)	0.00095 (28)
C(12)	$0 \cdot 00461$ (24)	$0 \cdot 00326$ (16)	0.01046 (50)	-0.00102 (16)	-0.00114 (32)	0.00023 (27)
C(13)	0.00449 (23)	$0 \cdot 00272$ (15)	0.00716 (42)	-0.00011 (16)	-0.00047 (28)	$0 \cdot 00039$ (24)
C(14)	$0 \cdot 00525$ (26)	0.00299 (16)	0.01069 (50)	-0.00069 (18)	0.00044 (33)	-0.00138 (26)
$\mathrm{N}(15)$	$0 \cdot 00493$ (20)	$0 \cdot 00279$ (13)	0.00661 (36)	0.00012 (15)	$0 \cdot 00045$ (24)	-0.00094 (19)
C(16)	0.00720 (30)	0.00343 (17)	0.01140 (56)	0.00031 (20)	0.00105 (37)	-0.00200 (27)
$\mathrm{C}(17)$	$0 \cdot 00574$ (28)	0.00478 (20)	$0 \cdot 01302$ (56)	$0 \cdot 00059$ (21)	$0 \cdot 00239$ (36)	-0.00251 (31)
$\mathrm{C}(18)$	$0 \cdot 00440$ (24)	0.00327 (16)	0.00955 (51)	$0 \cdot 00103$ (16)	0.00117 (29)	-0.00033 (25)
C(19)	0.00419 (24)	0.00276 (15)	0.00714 (43)	$0 \cdot 00024$ (16)	-0.00023 (27)	-0.00045 (23)
$\mathrm{O}(20)$	$0 \cdot 00532$ (18)	$0 \cdot 00363$ (12)	$0 \cdot 00814$ (32)	-0.00073 (12)	-0.00067 (21)	$0 \cdot 00001$ (17)
$\mathrm{O}(21)$	$0 \cdot 00651$ (19)	$0 \cdot 00364$ (12)	$0 \cdot 00762$ (31)	$0 \cdot 00030$ (14)	$0 \cdot 00084$ (22)	$0 \cdot 00063$ (17)

Thermal motion analysis

Fig. 2 gives a stereoscopic view of the molecule (Johnson, 1965) and shows the shape and orientation of the thermal vibration ellipsoids. When the thermal motion is analysed in terms of the rigid-body motion (Scho-

Table 5. Interatomic distances (\AA) and angles (${ }^{\circ}$) E.s.d's are in parentheses

$\mathrm{C}(1)-\mathrm{C}(18)$	1.319 (5)	$\mathrm{O}(8)-\mathrm{C}(9)$	1.421 (4)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 514$ (5)	$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 434$ (5)
$\mathrm{C}(2)-\mathrm{O}(20)$	1.449 (4)	$\mathrm{O}(10)-\mathrm{C}(11)$	$1 \cdot 381$ (4)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.554 (4)	$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 363$ (5)
$\mathrm{C}(3)-\mathrm{O}(21)$	$1 \cdot 427$ (4)	$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 410$ (5)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.524 (4)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.523 (5)
$\mathrm{C}(4)-\mathrm{C}(19)$	1.506 (4)	$\mathrm{C}(14)-\mathrm{N}(15)$	1.470 (4)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.524 (4)	$\mathrm{N}(15)-\mathrm{C}(19)$	$1 \cdot 465$ (4)
$\mathrm{C}(5)-\mathrm{C}(13)$	1.404 (4)	$\mathrm{N}(15)-\mathrm{C}(16)$	$1 \cdot 478$ (4)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.410 (4)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.546 (5)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.365 (4)	C(17)-C(18)	1.515 (5)
$\mathrm{C}(7)-\mathrm{C}(11)$	1.379 (5)	$\mathrm{C}(18)-\mathrm{C}(19)$	1.502 (4)
$\mathrm{C}(7)-\mathrm{O}(8)$	1.383 (4)		
	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(18)$	121.9 (3)	
	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$115 \cdot 3$ (3)	
	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(20)$	$105 \cdot 8$ (3)	
	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(20)$	$110 \cdot 0$ (2)	
	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$109 \cdot 7$ (3)	
	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(21)$	108.9 (2)	
	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(21)$	110.7 (2)	
	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(19)$	$106 \cdot 9$ (2)	
	$\mathrm{C}(19)-\mathrm{C}(4)-\mathrm{C}(5)$	108.5 (2)	
	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(13)$	119.2 (3)	
	$\mathrm{C}(13)-\mathrm{C}(5)-\mathrm{C}(6)$	$120 \cdot 7$ (3)	
	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	116.7 (3)	
	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)$	122.7 (3)	
	$\mathrm{C}(11)-\mathrm{C}(7)-\mathrm{O}(8)$	$109 \cdot 6$ (3)	
	$\mathrm{C}(7)-\mathrm{O}(8)-\mathrm{C}(9)$	$105 \cdot 3$ (3)	
	$\mathrm{O}(8)-\mathrm{C}(9)-\mathrm{O}(10)$	$108 \cdot 2$ (3)	
	$\mathrm{C}(9)-\mathrm{O}(10)-\mathrm{C}(11)$	104•8 (3)	
	$\mathrm{O}(10)-\mathrm{C}(11)-\mathrm{C}(7)$	109.9 (3)	
	$\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(12)$	122.0 (3)	
	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	117.3 (3)	
	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(5)$	$120 \cdot 5$ (3)	
	$\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(14)$	122.9 (3)	
	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{N}(15)$	$110 \cdot 7$ (3)	
	$\mathrm{C}(14)-\mathrm{N}(15)-\mathrm{C}(19)$	$107 \cdot 6$ (2)	
	$\mathrm{C}(19)-\mathrm{N}(15)-\mathrm{C}(16)$	$104 \cdot 1$ (2)	
	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$104 \cdot 2$ (3)	
	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$103 \cdot 8$ (3)	
	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$106 \cdot 8$ (3)	
	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(1)$	121.0 (3)	
	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{N}(15)$	$103 \cdot 9$ (3)	
	$\mathrm{N}(15)-\mathrm{C}(19)-\mathrm{C}(4)$	$110 \cdot 8$ (2)	
	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(4)$	112.7 (3)	

Fig. 2. Stereoscopic plot of the lycorine molecule. Thermal ellipsoids are scaled to include 50% probability.

Fig. 3. Stereoscopic plot of the hydrogen bonding in lycorine structure.

Molecular structure

Interatomic distances and valency angles of the lycorine molecule are given in Table 5. No attempt has been made to establish the absolute configuration, suggested by Nakagawa \& Uyeo (1959) and by the X-ray analysis of dihydrolycorine hydrobromide (Shiro, Sato \& Koyama, 1968). The bond lengths and angles do not differ significantly from normal values. The junction between rings B and C is trans and between C and D, cis. Best planes through selected atoms are given in Table 6 with the displacements of the atoms from these planes. The fragment including atoms from $\mathrm{C}(5)$ to $\mathrm{C}(13)$ is nearly planar. The B ring is a distorted boat.

Molecular packing

Hydrogen bonding exists in this structure (Table 7). Each hydroxyl group $\mathrm{O}(20)-\mathrm{H}(20)$ is involved in two hydrogen bonds and acts both as a proton donor and as a proton acceptor (Fig.3). In both cases, these bonds are nearly linear.

Table 7. Geometry of the hydrogen bonding between the molecules

Symmetry code $c: 0 \cdot 5-x, 1-y, 0 \cdot 5+z$			
Hydrogen bond	Distance $\mathrm{H} \cdots \mathrm{~N}$	Distance $\mathrm{O} \cdots \mathrm{~N}$	$\begin{gathered} \text { Angle } \\ \mathrm{O}-\mathrm{H} \cdots \mathrm{~N} \end{gathered}$
$\mathrm{O}(20)-\mathrm{H}(20) \cdots \mathrm{N}(15)(c)$	1.859	2.829	176.8°
Hydrogen bond	Distance $\mathrm{H} \cdots \mathrm{O}$	Distance $\mathrm{O} \cdots \mathrm{O}$	$\begin{gathered} \text { Angle } \\ \mathrm{O}-\mathrm{H}^{\cdots} \cdot \mathrm{O} \end{gathered}$
$\mathrm{O}(21)-\mathrm{H}(21) \cdots \mathrm{O}(20)(c)$	1.865	2.785	169.8°

The packing is efficient and several other distances between atoms are approximately equal to the sum of the van der Waals radii. In all these contacts at least one hydrogen atom is involved (Table 8).

The calculations were carried out with a local version of the X-RAY 70 System of crystallographic programs (Stewart, Kundell \& Baldwin, 1970) on a UNIVAC 1108 Computer (Centre de Calcul de l'Université ParisSud). The program DEVIN, written by C. Riche, was used to choose the set of symbolic phases and the pro-

Table 8. Shortest intramolecular distances in lycorine structure (\AA)
Symmetry code:

$a:$	$1+x$	y
$b: 0.5+x$	$1.5-y$	z
$c: 0.5-x$	$1-y$	$0.5+z$

C(1)	$\mathrm{H}(3)$ (c)	2.852	$\mathrm{C}(18)$	$\mathrm{H}(3)$ (c)	2.875
C(2)	$\mathbf{H}(21)$ (c)	2.902	C(19)	$\mathrm{H}(20)$ (c)	$2 \cdot 859$
$\mathrm{O}(10)$	$\mathrm{H}(1)$ (a)	2.401	H(4)	$\mathrm{C}(2)$ (c)	$2 \cdot 760$
$\mathrm{O}(10)$	H(19) (b)	2.601	H(4)	$\mathrm{C}(3)$ (c)	$2 \cdot 768$
C(11)	$\mathrm{H}(19)(b)$	$2 \cdot 854$	H(4)	$\mathrm{H}(3)$ (c)	2.266
C(12)	$\mathbf{H}(19)(b)$	2.899	H(4)	$\mathrm{H}(2)$ (c)	$2 \cdot 113$
C(14)	$\mathbf{H}(20)(c)$	$2 \cdot 621$	H(12)	$\mathrm{O}(21)$ (b)	2.436
			H(20)	$\mathrm{H}(21)$ (c)	$2 \cdot 383$

gram ORTEP (Johnson, 1965) to make stereoscopic drawings.

We are deeply indebted to Professor Gay, head of the Laboratoire de Cristallographie et de Physique Cristalline de l'Université de Bordeaux I, where the structure amplitude data were collected. We wish to thank Dr Alléaume for his valuable help and Dr Longevialle (Institut de Chimie des Substances Naturelles, C.N.R.S., 91 -Gif-sur-Yvette) who recorded the mass spectrum of lycorine.

References

Burns, D. M., Ferrier, W. G. \& McMullan, J. T. (1967). Acta Cryst. 22, 623-629.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP. Report ORNL 3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Karle, J. \& Karle, I. L. (1966). Acta Cryst. 21, 849-859. Mills, J. A. (1952). J. Chem. Soc. pp. 4976-4985.
Nakagawa, Y. \& Uyeo, S. (1959). J. Chem. Soc. pp. 37363741.

Riche, C. (1970). C.R. Acad. Sci. Paris, Sér. C, 271, 396-398.
Riche, C. (1972). Acta Cryst. A 29, 133-137.
Shiro, M., Sato, T. \& Koyama, H. (1968). J. Chem. Soc. (B), pp. 1544-1551.

Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The X-RAY System. Univ. of Maryland, College Park, Maryland.

[^0]: * The list of observed and calculated structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30230 (5 pp .). Copies are available fiom: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

